Notes/Tricky Questions from Examlet 2:

(5 points) Let a and b be integers, b > 0. We used two formulas to define the quotient ¢ and the
remainder r of a divided by b. One of these is a = bg + r. What is the other?

Solution: 0 <r<b

Don’t forget constraints on r

2. (6 points) Use the Euclidean algorithm to compute ged(1702,1221). Show your work.

Solution:

1702 — 1221 = 481

1221 — 481 x 2 = 1221 — 962 = 259
481 — 259 = 222

259 — 222 =237

222—-6x37=0

So ged(1702,1221) = 37
ged(1702,1221).

Memorize the Euclidean algorithm

1. (5 points) Is the following claim true? Informally explain why it is, or give a concrete counter-

example showing that it is not.

Claim: For all positive integers a, b, and ¢, if ged(a, be) > 1, then ged(a,b) > 1 and ged(a,¢) > 1.
Solution: This is false. Consider @ = b = 3 and ¢ = 2. Then bc = 6. So ged(a,bc) = 3 > 1 but

ged(a,c) = 1.

Know the properties of gcd

Zero is a multiple of 7.

Zero is a multiple of all integers

For any positive integers p and g,
if lem(p, g) = pg, then p and q are
relatively prime.

Memorize this property

For all prime numbers p, there are exactly
two natural numbers g such that g | p.

Memorize this property
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k=—k (mod7) true for all k true for some k | /

false for all k&

Not necessarily true for all values k

1. (5 points) Is the following claim true? Informally explain why it is, or give a concrete counter-
example showing that it is not.

Claim: For all non-zero integers ¢ and b, if a | b and b | @, then a = b.

Solution: This is false. Consider ¢ = 3 and b= —3. Then a | b and b | @, but a # b.

Understand the properties of “divides”

ged(0,0) 0 1 infinite undefined | /

Memorize this value

If @ and b are positive integers and
r = remainder(a, b),
then ged(b, ) = ged(a, b)

true | +/ false

Memorize this property

1. (5 points) Is the following claim true? Informally explain why it is, or give a concrete counter-
example showing that it is not.

Claim: For any positive integers p and ¢, p = ¢ (mod 1).

Solution: This is true. p = ¢ (mod 1) is equivalent to p — g = n x 1 = n for some integer n. But
we can always find an integer that will make this equation balance!

Remember what mod 1 implies

If p, g, and k are positive
integers, then ged(pg, gk) = q D pq I:I pak I:I gged(p,k) | v

Memorize this property

Two positive integers p and g are relatively
prime if and only if ged(p,q) = 1. true | +/ false

Review the definition of relatively prime



ged(k,0) 0 k | undefined

Memorize this property

1. (5 points) Is the following claim true? Informally explain why it is, or give a concrete counter-
example showing that it is not.

For any positive integers s, ¢, p, ¢, if s =¢ (mod p) and p | ¢, then s =¢ (mod g).

Solution: Consider s = 1,{ =4, p=3 and ¢ = 6. Then 3 | 6 and s and ¢ are congruent mod 3,
but but s and ¢ aren’t congruent mod 6.

Think of how divides and congruence mod k relate

Prove that if n is an integer, then n? + 2 is not divisible by 4.

Solution: Let n be an integer. From the Division Algorithm (aka definition of remainder), we know
that there are integers ¢ and r such that n = 4¢ +r.

There are five cases, depending on what the remainder r is:

Case 1: n = 4q. Then n? + 2 = 16¢* + 2 = 4(4¢*) + 2.

Case 2: n = 4q + 1. Then n? + 2 = 16¢* + 8¢ + 3 = 4(4¢* + 2¢q) + 3.

Case 3: n=4q + 2. Then n? + 2 = 16¢°® + 16g + 6 = 4(4¢> + 4g + 1) + 2.

Case 2: n = 4g + 3. Then n? + 2 = 16¢* + 24¢ + 11 = 4(4¢* + 6¢ + 2) + 3.

In all four cases, the remainder of n divided by 4 is not zero, so n isn’t divisible by 4.
Be careful when using cases

For all real numbers k, m, n and r, if r = remainder(m,n), k | m, and k | n, then k| r.

Solution: Let k, i, n and 7 be real numbers. Suppose that r = remainder(m,n), k | m, and k | n.

By the definition of remainder, m = ng + r, where g is some integer. (Also r has to be between 0 and
n, but that’s not required here.) So r = m — nq.

By the definition of divides, m = ks and n = kt, for some integers s and {. Substituting these into
the previous equation, we get

r=m—ng=ks — ktq = k(s — tq)

s — tq is an integer because s, t, and ¢ are integers. So r is the product of k£ and an integer, which
means that k| 7.

Don’t forget what the remainder does



For all real numbers z and y, if 3z + y* + 2 is odd, then z is even or y is even.

You must begin by explicitly stating the contrapositive of the claim:

Solution: Let’s prove the contrapositive. That is, for all real numbers z and y, if z is odd and y is
odd, then 3z + y* + 2 is even.

Let z and y be real numbers. Suppose that z and y are both odd. Then there are integers p and ¢
such that  =2p+1 and y = 2¢ + 1.

Then

3r+y?+2

32p+1)+(2¢+1)*+2
(6p+3)+ (4¢* +4g + 1) + 2
6p +4q° +4q+6

= 2(3p+2¢* +2¢+3)

Let t = 3p + 2¢* + 2¢ + 3. The above shows that 3z + y* + 2 = 2¢. Furthermore ¢ must be an integer
because p and q are integers. So 3z + y? + 2 must be even.

The contrapositive allows you to avoid having to use cases in this problem

1. (5 points) Is the following claim true? Informally explain why it is, or give a concrete counter-
example showing that it is not.

For any positive integers s, ¢, p, ¢, if s =¢ (mod p) and p | g, then s =t (mod g).

Solution: Consider s =1,¢t =4, p=3 and ¢ = 6. Then 3 | 6 and s and ¢ are congruent mod 3,
but but s and ¢ aren’t congruent mod 6.

1. (5 points) Is the following claim true? Informally explain why it is, or give a concrete counter-
example showing that it is not.

For any positive integers s, t, p, g, if s =¢ (mod p) and ¢ | p, then s =¢ (mod g).

Solution: This is true.

Informally, since ¢ is smaller, congruence mod ¢ makes coarser distinctions than congruence mod
g. So this is in the right direction and the relationship ¢ | p ensures that the details work out.

More formally, from s = ¢ (mod p) and ¢ | p, we get that s =t + pk and p = gj, where k and j are
integers. So s =t + ¢(jk), which means that s = ¢ (mod g).

Compare the previous two problems



